SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Outline	OPERATING SYSTEMS	
Code No.:	EDP 234	
Program:	BUSINESS PROGRAMMER	
Semester:	THREE	
Date:	SEPTEMBER, 1986	
Author:	R. LAILEY	
	New:	Revision:
(280	
APPROVED:	dirperson	86-09-10 Date

EDP 234

Course Name

Course Number

TIME: 3 hours per week

TEXT: "An Operating Systems Vade Mecum", by Raphael A. Finkel;

Prentice-Hall

GENERAL CONTENT:

This course focuses on two specific aspects of operating systems. The first is a step-by-step analysis of the complex issues, policies, algorithms and mechanisms found in modern operating systems. The second is a theoretical as well as practical look at a number of VAX VMS features. Particular attention is paid to VMS features that may be utilized from VAX COBOL.

STUDENT EVALUATION:

- Tests (2 @ 30)	=	60%	OR	Tests	=	30%
- Assignments	=	30%		Assignments	=	30%
- Quizzes/Participation	=	10%		Final Test	=	40%
		100%				100%

The final test will cover the entire semester and may be written only if the student's grade, prior to the test, is greater than 45% and all assignments have been completed successfully.

NOTE: Assignments not received by the due dates are subject to a zero grade.

GRADING:

A+ = 90% - 100% A = 80% - 89% B = 70% - 79% C = 55% - 69% R = 0% - 54%

SECTION A

MODULE 1 - Chapter 1 - INTRODUCTION:

- The Resource Principle
- Historical Development
- The Beautification Principle
- Discussion of depth of material to be analyzed

MODULE 2 - Chapter 2 - TIME MANAGEMENT:

- Short, medium and long-term scheduling
- Scheduling terminology, policies
- Scheduling in perspective

MODULE 3 - Chapter 3 - SPACE MANAGEMENT:

- Space Management terminology and policies
- Fixed partition approach
- Single segment approach
- Segmentation
- Paging approach
- Paging policies
- Space management in perspective

MODULE 4 - Chapter 4 - NON-PREEMPTIVE RESOURCES:

- Non-sharable and non-preemptive resources
- Resource Allocation terminology, alternatives and policies
- Resource management in perspective

MODULE 5 - Chapter 5 - TRANSPUT:

- The beautification principle related to resource allocation and transput
- Hardware device terminology and characteristics
- CPU Device interaction
- Software control of devices
- Data modification
- Process review of transput

MODULE 6 - Chapter 6 - FILE STRUCTURES

- Naming structure of files
- Access control
- Access methods
- File Recovery
- Transactions
- Physical Representation
- File management in perspective

MODULE 7 - Chapter 7 - THE USER INTERFACE:

- The Command Interpreter
- Interactive Programs
- Utility Programs

MODULE 8 - Chapter 8 - CONCURRENCY:

- Problem areas defined
- Mechanisms

MODULE 9 - Chapter 9 - CO-OPERATING PROCESSES

- Creating and naming processes
- Interprocess Communication
- Distributed Operating Systems

SECTION B

MODULE 1 - UNDERSTANDING SYSTEM ARCHITECTURE:

Notes

- VAX Processors
- Multiprocessing VAX SystemS
- VAX Process Structure
- Executing an Image on VMS
- System Component Hierarchy
 - Run-Time Library
 - Command Language Interpreter
 - Record Management Services
 - System Services

MODULE 2 - CALLING PROCEDURES:

Notes

- VAX/VMS Procedure Calling Standard
- Calling System-Supplied Procedures

MODULE 3 - SYNCHRONIZING PROCESSES:

Notes

- Scheduling events using the System Timer Queue
- Using event flags
- AST Description and Deliveries
- Synchronizing events using VMS Lock Manager
- Synchronization Techniques

MODULE 4 - ACCESSING DEVICES:

Notes - VAX/VMS I/O System Overview

- Performing I/O Operations

- Determining, setting and controlling device characteristics

MODULE 5 - COMMUNICATING NOTHER PROCESSES:

Notes - Communicating within a process

- Communicating between processes

- Interprocessor communications

MODULE 6 - CREATING AND MANAGING OTHER PROCESSES:

Notes - Choosing a Processing Technique

- Creating, altering and managing processes

MODULE 7 - Building Human Interfaces:

Notes - Using the Librarian to create a HELP facility

- Adding commands, qualifiers, and options to the command

language

- Creating messages

- Using the Run-Time Library

MODULE 8 - CREATING, ACCESSING AND INDEXING FILES:

Notes - Understanding RMS files

- Using RMS Utilities

MODULE 9 - MEASURING AND IMPROVING PERFORMANCE:

Notes - Measuring the performance of an application

MODULE 10 - UNDERSTANDING DISK AND TAPE STRUCTURE:

Notes - VAX Disk File Structure

- Displaying Disk File Information

- Recovering Files

- VAX/VMS Implementation of ANSI Magnetic Tape Standard

- Displaying Tape File Information